Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
New Phytol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666344

RESUMO

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.

2.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627563

RESUMO

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Assuntos
Secas , Superóxido Dismutase , Prolina , China , Folhas de Planta/química , Fotossíntese/fisiologia , Plântula/fisiologia , Árvores , Água/análise
3.
Tree Physiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498322

RESUMO

Allocation of non-structural carbohydrates (NSC) to storage allows plants to maintain a carbon pool in anticipation of future stress. However, to do so, plants must forego use of the carbon for growth, creating a trade-off between storage and growth. It is possible that plants actively regulate the storage pool to maximise fitness in a stress-prone environment. Here, we attempt to identify the patterns of growth and storage that would result during drought stress under the hypothesis that plants actively regulate carbon storage. We use optimal control theory to calculate the optimal allocation to storage and utilisation of stored carbon over a single drought stress period. We examine two fitness objectives representing alternative life strategies: prioritisation of growth (MaxM) and prioritisation of storage (MaxS), as well as strategies in between these extremes. We find that optimal carbon storage consists of three discrete phases: 'growth', 'storage without growth', and the 'stress' phase where there is no carbon source. This trajectory can be defined by the time point when the plant switches from growth to storage. Growth-prioritising plants switch later and fully deplete their stored carbon over the stress period, while storage-prioritising plants either do not grow or switch early in the drought period. The switch time almost always occurs before soil water is depleted, meaning that growth stops before photosynthesis. We conclude that the common observation of increasing carbon storage during drought could be interpreted as an active process that optimises plant performance during stress.

5.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294051

RESUMO

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Assuntos
Gossypium , Ribulose-Bifosfato Carboxilase , Gossypium/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono , Temperatura , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
6.
Glob Chang Biol ; 30(1): e17072, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273547

RESUMO

Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.


Assuntos
Sequestro de Carbono , Ecossistema , Mudança Climática , Florestas , Carbono , Solo
7.
Front Plant Sci ; 14: 1280314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023880

RESUMO

Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.

8.
Front Plant Sci ; 14: 1091418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409304

RESUMO

statement: Mesophyll conductance (g m) was negatively correlated with wheat leaf age but was positively correlated with the surface area of chloroplasts exposed to intercellular airspaces (S c). The rate of decline in photosynthetic rate and g m as leaves aged was slower for water-stressed than well-watered plants. Upon rewatering, the degree of recovery from water-stress depended on the age of the leaves, with the strongest recovery for mature leaves, rather than young or old leaves. Diffusion of CO2 from the intercellular airspaces to the site of Rubisco within C3 plant chloroplasts (gm) governs photosynthetic CO2 assimilation (A). However, variation in g m in response to environmental stress during leaf development remains poorly understood. Age-dependent changes in leaf ultrastructure and potential impacts on g m, A, and stomatal conductance to CO2 (g sc) were investigated for wheat (Triticum aestivum L.) in well-watered and water-stressed plants, and after recovery by re-watering of droughted plants. Significant reductions in A and g m were found as leaves aged. The oldest plants (15 days and 22 days) in water-stressed conditions showed higher A and gm compared to irrigated plants. The rate of decline in A and g m as leaves aged was slower for water-stressed compared to well-watered plants. When droughted plants were rewatered, the degree of recovery depended on the age of the leaves, but only for g m. The surface area of chloroplasts exposed to intercellular airspaces (S c) and the size of individual chloroplasts declined as leaves aged, resulting in a positive correlation between g m and S c. Leaf age significantly affected cell wall thickness (t cw), which was higher in old leaves compared to mature/young leaves. Greater knowledge of leaf anatomical traits associated with g m partially explained changes in physiology with leaf age and plant water status, which in turn should create more possibilities for improving photosynthesis using breeding/biotechnological strategies.

9.
Plant Environ Interact ; 4(2): 70-85, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37288162

RESUMO

Aridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of Eucalyptus camaldulensis subsp. camaldulensis sourced from an aridity gradient together in the field for ~650 days under low and high precipitation treatments. Eucalyptus camaldulesis is considered a phreatophyte (deep-rooted species that utilizes groundwater), so we hypothesized that genotypes from more arid environments would show lower aboveground productivity, higher leaf gas-exchange rates, and greater tolerance/avoidance of dry surface soils (indicated by lower responsiveness) than genotypes from less arid environments. Aridity predicted genotype responses to precipitation, with more arid genotypes showing lower responsiveness to reduced precipitation and dry surface conditions than less arid genotypes. Under low precipitation, genotype net photosynthesis and stomatal conductance increased with home-climate aridity. Across treatments, genotype intrinsic water-use efficiency and osmotic potential declined with increasing aridity while photosynthetic capacity (Rubisco carboxylation and RuBP regeneration) increased with aridity. The observed clinal patterns indicate that E. camaldulensis genotypes from extremely arid environments possess a unique strategy defined by lower responsiveness to dry surface soils, low water-use efficiency, and high photosynthetic capacity. This strategy could be underpinned by deep rooting and could be adaptive under arid conditions where heat avoidance is critical and water demand is high.

10.
Plant Cell Environ ; 46(9): 2763-2777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306365

RESUMO

Adaptation to future climates characterized by more frequent severe droughts requires enhanced mechanistic understanding of tree mortality. However, our knowledge of the physiological limits to withstand extreme drought, and how the coordination between water and carbon traits enhances survival, is still limited. Potted seedlings of Pinus massoniana were dehydrated to three target droughts (percentage loss of stem hydraulic conductivity of ca. 50%, 85%, and 100%; PLC50 , PLC85 and PLC100 ) and then relieved from these target droughts by fully rewatering. Predawn and midday water potentials (Ψ), relative water content (RWC), PLC and nonstructural carbohydrates (NSC) were monitored. During drought, Ψ and RWC declined as PLC increased. Root RWC declined more rapidly than other organ RWCs, particularly after PLC50 stress. All organ NSC concentrations were above predrought values. During rewatering, water trait recovery declined as drought increased, with no mortality at PLC50 but 75% mortality at PLC85 . The observed stem hydraulic recovery at PLC50 following rewatering was not correlated to NSC dynamics. Collectively, our results highlighted the primary role of hydraulic failure in Pinus massoniana seedling mortality by assessing mortality threshold and links among water status and water supply. Root RWC can be considered as a potential warning signal of P. massoniana mortality.


Assuntos
Pinus , Traqueófitas , Água , Secas , Carboidratos/química , Plântula/fisiologia , Pinus/fisiologia , Árvores/fisiologia
11.
Front Plant Sci ; 14: 1150116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152164

RESUMO

The frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge. In this study, we assess the capacity of a functionally important plant species from south-eastern Australia (Banksia marginata, Proteaceae) to adapt to water-limited environments. A water-manipulated common garden experiment was used to test for phenotypic plasticity and genetic adaptation in seedlings sourced from seven provenances of contrasting climate-origins (wet and dry). We found evidence of local adaptation relating to plant growth investment strategies with populations from drier climate-origins showing greater growth in well-watered conditions. The results also revealed that environment drives variation in physiological (stomatal conductance, predawn and midday water potential) and structural traits (wood density, leaf dry matter content). Finally, these results indicate that traits are coordinated to optimize conservation of water under water-limited conditions and that trait coordination (phenotypic integration) does not constrain phenotypic plasticity. Overall, this study provides evidence for adaptive capacity relating to drought conditions in B. marginata, and a basis for predicting the response to climate change in this functionally important plant species.

12.
Plants (Basel) ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903856

RESUMO

Grasses are hyper-accumulators of silicon (Si), which is known to alleviate diverse environmental stresses, prompting speculation that Si accumulation evolved in response to unfavourable climatic conditions, including seasonally arid environments. We conducted a common garden experiment using 57 accessions of the model grass Brachypodium distachyon, sourced from different Mediterranean locations, to test relationships between Si accumulation and 19 bioclimatic variables. Plants were grown in soil with either low or high (Si supplemented) levels of bioavailable Si. Si accumulation was negatively correlated with temperature variables (annual mean diurnal temperature range, temperature seasonality, annual temperature range) and precipitation seasonality. Si accumulation was positively correlated with precipitation variables (annual precipitation, precipitation of the driest month and quarter, and precipitation of the warmest quarter). These relationships, however, were only observed in low-Si soils and not in Si-supplemented soils. Our hypothesis that accessions of B. distachyon from seasonally arid conditions have higher Si accumulation was not supported. On the contrary, higher temperatures and lower precipitation regimes were associated with lower Si accumulation. These relationships were decoupled in high-Si soils. These exploratory results suggest that geographical origin and prevailing climatic conditions may play a role in predicting patterns of Si accumulation in grasses.

13.
Front Plant Sci ; 14: 1277037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179477

RESUMO

High energy costs are a barrier to producing high-quality produce at protected cropping facilities. A potential solution to mitigate high energy costs is film technology, which blocks heat-producing radiation; however, the alteration of the light environment by these films may impact crop yield and quality. Previous studies have assessed the impact of ULR 80 [i.e., light-blocking film (LBF)] on crop yield and photosynthetically active radiation (PAR); however, an assessment of the spectral environment over different seasons is important to understand potential crop impacts through different developmental phases. In this study, two varieties (red and orange) of Capsicum annuum were grown across two crop cycles: one cycle with primary crop growth in the autumn (i.e., autumn experiment [AE]) and the other with primary crop growth in the summer (i.e., summer experiment [SE]). LBF reduced PAR (roof level: 26%-30%, plant canopy level: 8%-25%) and net radiation (36%-66%). LBF also reduced total diffuse PAR (AE: 8%, SE: 15%), but the diffuse fraction of PAR increased by 7% and 9% for AE and SE, respectively, potentially resulting in differential light penetration throughout the canopy across treatments. LBF reduced near-infrared radiation (700 nm-2,500 nm), including far-red (700 nm-780 nm) at mid- and lower-canopy levels. LBF significantly altered light quantity and quality, which determined the amount of time that the crop grew under light-limited (<12 mol m-2 d-1) versus sufficient light conditions. In AE, crops were established and grown under light-limited conditions for 57% of the growing season, whereas in SE, crops were established and grown under sufficient light conditions for 66% of the growing season. Overall, LBF significantly reduced the yield in SE for both varieties (red: 29%; orange: 16%), but not in AE. The light changes in different seasons in response to LBF suggest that planting time is crucial for maximizing fruit yield when grown under a film that reduces light quantity. LBF may be unsuitable for year-round production of capsicum, and additional development of LBF is required for the film to be beneficial for saving energy during production and sustaining good crop yields in protected cropping.

14.
Front Plant Sci ; 13: 1035801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466262

RESUMO

The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.

15.
Front Plant Sci ; 13: 1030620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438110

RESUMO

Detrimental impacts of drought on crop yield have tripled in the last 50 years with climate models predicting that the frequency of such droughts will intensify in the future. Silicon (Si) accumulation, especially in Poaceae crops such as wheat (Triticum aestivum L.), may alleviate the adverse impacts of drought. We have very limited information, however, about whether Si supplementation could alleviate the impacts of drought under field conditions and no studies have specifically manipulated rainfall. Using field-based rain exclusion shelters, we determined whether Si supplementation (equivalent to 39, 78 and 117 kg ha-1) affected T. aestivum growth, elemental chemistry [Si, carbon (C) and nitrogen (N)], physiology (rates of photosynthesis, transpiration, stomatal conductance, and water use efficiency) and yield (grain production) under ambient and drought (50% of ambient) rainfall scenarios. Averaged across Si treatments, drought reduced shoot mass by 21% and grain production by 18%. Si supplementation increased shoot mass by up to 43% and 73% in ambient and drought water treatments, respectively, and restored grain production in droughted plants to levels comparable with plants supplied with ambient rainfall. Si supplementation increased leaf-level water use efficiency by 32-74%, depending on Si supplementation rates. Water supply and Si supplementation did not alter concentrations of C and N, but Si supplementation increased shoot C content by 39% and 83% under ambient and drought conditions, respectively. This equates to an increase from 6.4 to 8.9 tonnes C ha-1 and from 4.03 to 7.35 tonnes C ha-1 under ambient and drought conditions, respectively. We conclude that Si supplementation ameliorated the negative impacts of drought on T. aestivum growth and grain yield, potentially through its beneficial impacts on water use efficiency. Moreover, the beneficial impacts of Si on plant growth and C storage may render Si supplementation a useful tool for both drought mitigation and C sequestration.

16.
Environ Microbiol ; 24(10): 4652-4669, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36059126

RESUMO

Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings.


Assuntos
Fusarium , Microbiota , Fusarium/genética , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo
17.
Plant Cell Environ ; 45(12): 3476-3491, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151708

RESUMO

Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting 'local' temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future.


Assuntos
Eucalyptus , Árvores , Árvores/genética , Eucalyptus/genética , Fenótipo , Adaptação Fisiológica/genética , Evolução Molecular , Plásticos , Evolução Biológica
18.
Front Plant Sci ; 13: 967187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035730

RESUMO

Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (C branch), higher minimum conductance (g min) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1-3 days among species, while photosynthesis at saturating light (A sat) and stomatal conductance (g s) recovery lagged behind water potential recovery depending on species, with g s recovery being more delayed than A sat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.

19.
Front Plant Sci ; 13: 822136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574083

RESUMO

Between late 2015 and early 2016, more than 7,000 ha of mangrove forest died along the coastline of the Gulf of Carpentaria, in northern Australia. This massive die-off was preceded by a strong 2015/2016 El Niño event, resulting in lower precipitation, a drop in sea level and higher than average temperatures in northern Australia. In this study, we investigated the role of hydraulic failure in the mortality and recovery of the dominant species, Avicennia marina, 2 years after the mortality event. We measured predawn water potential (Ψpd) and percent loss of stem hydraulic conductivity (PLC) in surviving individuals across a gradient of impact. We also assessed the vulnerability to drought-induced embolism (Ψ50) for the species. Areas with severe canopy dieback had higher native PLC (39%) than minimally impacted areas (6%), suggesting that hydraulic recovery was ongoing. The high resistance of A. marina to water-stress-induced embolism (Ψ50 = -9.6 MPa), indicates that severe water stress (Ψpd < -10 MPa) would have been required to cause mortality in this species. Our data indicate that the natural gradient of water-stress enhanced the impact of El Niño, leading to hydraulic failure and mortality in A. marina growing on severely impacted (SI) zones. It is likely that lowered sea levels and less frequent inundation by seawater, combined with lower inputs of fresh water, high evaporative demand and high temperatures, led to the development of hyper-salinity and extreme water stress during the 2015/16 summer.

20.
Glob Chang Biol ; 28(13): 4085-4096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35412664

RESUMO

Phosphorus (P) is often one of the most limiting nutrients in highly weathered soils of humid tropical forests and may regulate the responses of carbon (C) feedback to climate warming. However, the response of P to warming at the ecosystem level in tropical forests is not well understood because previous studies have not comprehensively assessed changes in multiple P processes associated with warming. Here, we detected changes in the ecosystem P cycle in response to a 7-year continuous warming experiment by translocating model plant-soil ecosystems across a 600-m elevation gradient, equivalent to a temperature change of 2.1°C. We found that warming increased plant P content (55.4%) and decreased foliar N:P. Increased plant P content was supplied by multiple processes, including enhanced plant P resorption (9.7%), soil P mineralization (15.5% decrease in moderately available organic P), and dissolution (6.8% decrease in iron-bound inorganic P), without changing litter P mineralization and leachate P. These findings suggest that warming sustained plant P demand by increasing the biological and geochemical controls of the plant-soil P-cycle, which has important implications for C fixation in P-deficient and highly productive tropical forests in future warmer climates.


Assuntos
Ecossistema , Fósforo , Ciclo do Carbono , Florestas , Solo/química , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA